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X Chromosome Sites Autonomously Recruit
the Dosage Compensation Complex
in Drosophila Males

Delphine Fagegaltier, Bruce S. Baker"
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It has been proposed that dosage compensation in Drosophila males occurs by binding of two core proteins, MSL-1 and
MSL-2, to a set of 35-40 X chromosome “entry sites” that serve to nucleate mature complexes, termed
compensasomes, which then spread to neighboring sequences to double expression of most X-linked genes. Here
we show that any piece of the X chromosome with which compensasomes are associated in wild-type displays a normal
pattern of compensasome binding when inserted into an autosome, independently of the presence of an entry site.
Furthermore, in chromosomal rearrangements in which a piece of X chromosome is inserted into an autosome, or a
piece of autosome is translocated to the X chromosome, we do not observe spreading of compensasomes to regions of
autosomes that have been juxtaposed to X chromosomal material. Taken together these results suggest that
spreading is not involved in dosage compensation and that nothing distinguishes an entry site from the other X
chromosome sites occupied by compensasomes beyond their relative affinities for compensasomes. We propose a new
model in which the distribution of compensasomes along the X chromosome is achieved according to the hierarchical

affinities of individual binding sites.
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Introduction

Most X chromosomal genes are essential or relevant to
both sexes. To cope with the difference in the number of
copies of these genes in females (XX) and males (XY),
organisms have evolved a variety of mechanisms, collectively
termed dosage compensation, to equalize the levels of X-
linked gene products in the two sexes. In Drosophila males the
expression of most of the genes on the single X chromosome
is doubled. At least six protein-coding genes, collectively
referred to as male specific lethals (msls), are required for dosage
compensation (Baker et al. 1994; Marin et al. 2000; Meller
2000): msl-1, msl-2, and msl-3, whose functions remain
unknown; maleless (mle), encoding an RNA helicase; males
absent on the first (mof), encoding a histone acetyltransferase;
and jil-1, encoding a histone kinase. The products of these
genes, together with noncoding RNAs encoded by the RNA on
the X genes (roX1 and r0X2) (Amrein and Axel 1997; Meller et
al. 1997; Franke and Baker 1999), are all reproducibly
associated with hundreds of locations along the length of
the polytenized salivary gland X chromosome in males. MOF
has been shown both in vivo and in vitro to acetylate
H4Lys16, a specific histone modification also found at sites
where compensasomes are associated with the male X
(Hilfiker et al. 1997; Smith et al. 2000; Akhtar and Becker
2001). Recently, JIL-1, which phosphorylates H3Ser10, was
shown to be enriched at the MSL binding sites in males (Wang
et al. 2001). Thus, MSL proteins and 70X RNAs are thought to
function in a ribonucleoprotein complex (compensasome) to
mediate dosage compensation by altering chromatin struc-
ture of the male X chromosome (Stuckenholz et al. 1999;
Franke and Baker 2000). In females translational repression
of msl-2 mRNA by the Sex-lethal protein (SXL) prevents
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formation of compensasomes and hence dosage compensa-
tion (Bashaw and Baker 1997; Kelley et al. 1997).

The processes and constraints that generate the observed
distribution of compensasomes along the male X chromo-
some are unknown. Although the hundreds of places where
compensasomes are found along the X chromosome are
referred to as “sites,” they are in fact not points, but rather
bands (small segments of chromosome) that roughly span the
size range of salivary chromosome bands seen with DNA
stains (i.e., a few tens to several hundreds of kilobases in
length). Thus, both the locations and the extents of these sites
are somehow specified. Furthermore, the compensasome
bands do not correspond to the bands where DNA is
condensed (Baker et al. 1994; Kelley et al. 1999; Demakova
et al. 2003). In addition, non-dosage-compensated X-linked
genes (e.g., LSPI-0) are scattered throughout the X chromo-
some and can reside next to dosage-compensated genes
(Baker et al. 1994). Since there is no known DNA-binding
component in the compensasome, and consensus DNA
sequences required for binding have not yet been identified,
an understanding of the distribution of compensasomes
along the X chromosome needs to encompass not only how
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Table 1. Summary of the Transpositions Studied: Transpositions, Duplications, and Reciprocal Translocations

Line Genotype Breakpoints Insertion Site ES* Number of Bands” N°¢

I Tp(1;2)rb*71g 3F3-5E8 23A1-5 3-4 9-17 0(172)
I Dp(1;3)sn'**" 6C-7C9 79D2-E1 2-3 8-9 0(112)
n Tp(1;2)sn*72d 7A8-8A5 32C; 58E 2 8-16 0 (128)
v Tp(1;3)w¥e° 2C1-3C5 77D3; 81 2-3 4-11 0 (106)
% Tp(1;3)v'74c 9E4-11B12 80-81 2 8-19 0 (219)
VI Tp(1;2)w-ec 3C2-3F1 37D 1 4 0 (102)
Vil Tp(1;3)f"71b 15A4-16C2 80-81 1 4-8 0 (115)
Vil Tp(1;3)JC153 16E2-4-17A-B 99D 0-1 3-5 0 (122)
IX Tp(1;3)sta 1E1-2A 89B21-C4 0 4-5 0(112)
X Tp(1;3)w? 3C2-3C6 61D 0 1-2 0 (61)
X Dp(1;3)w'67k 3A5-3E8 87E1-7 0 6-8 0 (155)
Xl T(1;3)v 10A1-2; 93B7-10 0 0 (140)
Xl T(1;2)odd™'° 5A3; 24B 0 0 (126)
XIv Dp(2;1)B19 25F1-24D5 9B4-C1 0 (140)
XV Dp(3;1)2-2 81F-82F10-11 3D 0(117)

Variations in both the number of bands observed in the transpositions and their intensity are due to variable accessibility of the piece examined on the squash and the
orientation of the chromosomes when flattened for observation. Similar variations were observed on the intact X. No additional MSL binding was observed into autosomal
regions flanking translocated X material or onto autosomal material inserted onto the X chromosome. We found a breakpoint in line VI to be at 3F1 instead of 3E7-8, and 5A
instead of 4A in line XIIl. Line Ill contains a piece of the X inserted into a pericentric inversion of the second chromosome, while line IV carries an inversion of 77D5-81.
See Materials and Methods for precise genotypes.

“ES, number of entry/high-affinity sites present in each transposition according to our observations and previous studies (Lyman et al. 1997).

PNumber of MSL bands observed in a wild-type background on each piece of the X inserted onto an autosome (lines | to XI), or number of MSL bands observed in autosomal
regions inserted into the X (lines Xl to XV).

N, percentage of nuclei showing additional bands in autosomal regions flanking the site of insertion of a piece of the X chromosome; the number of nuclei scored is
presented in parentheses.

Tp, transposition; Dp, duplication; T, reciprocal translocation.

DOI: 10.1371/journal.pbio.0020341.t001

complexes are targeted to these several hundred sites, but tions for their ability to bind compensasomes and initiate
also how the ends of each band are delimited. spreading.
A proposal for how the distribution of compensasome
bands along the X chromosome is generated (Kelley et al. Results
1999) has come from the following findings. MSL-1 and MSL-

2 represent core components of the complex: The presence The spreading model implies that a piece of the X
of both is required for either to bind, and none of the other chromosome translocated to an autosome must contain at
MSL proteins binds to the X chromosome in an msl-1 or msl-2 least one of the 35-40 “entry” sites if that piece of the X is to
mutant male (Lyman et al. 1997). Furthermore, in males recruit compensasomes and become dosage compensated. We
mutant for mle, msi-3, or mof, binding of MSL-1 and MSL-2 is looked at MSL binding in various chromosome rearrange-
only maintained at a limited number of sites (35-40) on the X ments that inserted small pieces of X chromosome into
chromosome, which include the r0X1 and r0X2 genes (Lyman autosomal locations. Table 1 summarizes the translocations,
et al. 1997; Kelley et al. 1999). Finally, r0X transgenes inserted transpositions, and duplications examined. The insertions in
into an autosome retain binding of compensasomes, and in the first set (lines I to XI) range in size from about 1% to 15%
addition show compensasome binding in the autosomal of the length of the X, and the corresponding stretch of X
region flanking the insertion site, a phenomenon termed chromosome for each contains 1-19 distinguishable MSL
spreading (Kelley et al. 1999). Based on these observations, a bands. These insertions were examined in heterozygous
reasonable model (Kelley et al. 1999) emerged suggesting that condition so we could readily identify the junctions between
the 35-40 sites of MSL-1 and MSL-2 binding on the X seen in X chromosomal and autosomal material. When large enough,
mle, msl-3, or mof mutants represent nucleation sites or entry they appear as a loop of unpaired chromosome protruding
sites for the complex. From these sites, newly assembled from the paired autosomes. We found that transpositions
compensasomes would spread in cis along the X to form the containing one (lines VI to VIII) or several (lines I to V)
hundreds of final sites observed in a wild-type male. In this previously described entry sites (Lyman et al. 1997) showed

spreading model, r0X RNAs would also be required for consistent MSL binding along the inserted piece (Table 1;
compensasome assembly (Park et al. 2003). However, there is Figure 1A, 1B, and 1D). Surprisingly, transposed pieces of X

to date no direct evidence that entry sites and spreading play chromosome lacking any entry site also showed MSL binding
any role in the processes that generate the normal pattern of when inserted into an autosome (Table 1, lines IX to XI;
compensasome binding along the X chromosome. We thus Figure 1C, 1E, and 1F). For all of these 11 transpositions the
directly tested this model by analyzing various pieces of the X binding pattern observed and the intensity of MSL bands
chromosome transposed or translocated to autosomal loca- reproducibly matched the expected pattern of that piece of
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Figure 1. MSL Binding to Pieces of X Chromosome Inserted into
Autosomes

Salivary glands from males heterozygous for each transposition were
fixed (47% acetic acid in phosphate-buffered saline, then lactic acid/
water/acetic acid [1:2:3]), squashed on slides, treated with anti-MSL-1
antibodies and a secondary Cy3 anti-rabbit immunoglobulin G
antibody, then counterstained with DAPI and viewed using a Zeiss
Axiophot microscope. Both duplications and transpositions were
able to attract compensasomes, whether or not they contained
predicted entry sites.

(A) Line IIL

(B) Line I, which contains the roXI gene.

(C) Line X shows one to two bands on the smallest transposition we
studied; the intensity of the second band was variable even on the X
chromosome.

(D) Line IV.

(E) Line IX.

(F) Line XL

Breakpoints (described in Table 1) were verified by cytology when
possible and/or with specific probes by in situ hybridization. Gray
value images were pseudo-colored and merged.

DOI: 10.1371/journal.pbio.0020341.g001

the X chromosome in a wild-type male. Even the smallest
piece we looked at (line X, approximately 200 kb) showed one
to two MSL bands (Figure 1C). Thus, we found that any piece
of the X chromosome moved to an autosomal location is able
to bind compensasomes, whether or not the transposed piece
of X chromosome contains an entry site. This finding suggests
that each of the hundreds of MSL bands observed on the X in
males carries the information necessary and sufficient to
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attract compensasomes, and does not require adjacent entry
sites.

Interestingly, duplications showed binding both along the
autosomal insertion and on the X chromosome (lines 11 and
XI), indicating that the supply of compensasomes is not
limiting in these circumstances. We also tested homozygous
transpositions and duplications for MSL binding in males and
found that we could recover MSL binding on each homo-
zygous transposed piece (unpublished data) as well as on the
X. Thus, even three copies of the same segment of the X
chromosome (two of the duplication plus the original piece
on the X) were able to maintain MSL binding. This result
extends previous data showing that, by using specific msl-2
transgenes escaping SXL repression, ectopic expression of
MSL-2 in females induced binding to both X chromosomes,
in a pattern identical to the single X of a wild-type male
(Bashaw and Baker 1997). Therefore, binding occurs regard-
less of the location and number of copies of the X-linked
targeted sequences.

The determinations listed in Table 1 of how many entry
sites each of the transpositions contains were made by
comparing the reported breakpoints of each rearrangement
to the described locations of entry sites (Lyman et al. 1997).
As cytological determinations can vary, we directly confirmed
the presence or absence of entry sites by examining MSL
binding in an msl-3 or mle mutant background for a subset of
these transpositions (Figure 2). Each line used in these
experiments contained the transposed region from the X
inserted into an autosome and a wild-type X chromosome.
For line XI we found that, in mle mutant individuals, MSL
binding was undetectable in either the transposed region
(3A5-E8) inserted at 87E17 (Figure 2A-2E) or in this region in
the wild-type X. As expected, the same is true when only a
subset of this region is duplicated: Line X did not show
binding in mle mutants to region 3C2-3C6 on the X or to the
transposition of that region inserted at 61D (Figure 2F-2K).
These findings confirm that lines X and XI do not contain
entry sites. Similarly, we confirmed that transpositions
inferred to contain entry sites in two lines (IV and VI) did
in fact contain such sites. Thus, for line IV in an mle mutant
background we observed MSL binding to one to three sites on
both the transposition and the corresponding region of the X
(Figure 2N and 2P), while for line VI in an msl-3 mutant
background we observed one site of MSL binding on both the
transposition and the corresponding region of the X (Figure
2S). These findings are consistent with those of Lyman et al.
(1997), who reported two entry sites in the region encom-
passed by the transposition in line VI, and one entry site in
the region encompassed by the transposition in line IV. Our
findings firmly establish that isolated subregions of the X
chromosome display normal patterns of compensasome
binding irrespective of whether they contain entry sites,
and thus suggest that entry sites do not play a distinct role in
the establishment of compensasome binding along the X as
postulated by the spreading hypothesis. Hereafter we will
refer to entry sites as high-affinity sites, their original name
(Lyman et al. 1997). During the course of this study, Oh et al.
(2004) have reported similar results for binding of compen-
sasomes to transpositions from lines I, VIII, and IX. However,
the scale of the analysis and the limited number of rearrange-
ments did not yield the same conclusions.

The two high-affinity sites identified to date correspond to
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the r0X1 and r0X2 genes (Kageyama et al. 2001; Park et al.
2003), and it was the fact that roX transgenes inserted into
autosomal locations are able to induce spreading—binding of
the MSLs to some autosomal sequences surrounding a 70X
transgene insertion site—that led to the hypothesis that
spreading gives rise to the wild-type distributions of
compensasome bands along the male X chromosome. We
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Figure 2. MSL Binding to Autosomal
Duplications of X Chromosome Pieces in
mle or msl-3 Mutant Larvae

Salivary glands from w; pr mie'* 7 len bw
mle; Dp (1;3)/msl2410 or w; Dp (1;2)/
msl2421; msl3?/msi3? females were
squashed and stained as described in
Figure 1, followed by in situ hybrid-
ization with a biotinylated probe specific
for regions carried by each duplication
(Lavrov et al. 2004) and incubation with
Oregon green-coupled streptavidin.
Conditions throughout the procedure
were adjusted to maximize MSL staining.
Specific biotinylated probes (green bars)
appear in green in merges (A, F, I, L, O,
Q, and R) and as bright bands in (B, D, G,
J, and M). MSL bands are shown in red in
merges and in (P) and as bright bands in
(G, E, H, K, N, and S). DAPI stain is blue.
MSL binding is absent from duplications
or the matching region on the X in line
XI (3A5-3E8) (A-E) and line X (3C2-3C6)
(F-K) in mle mutants, confirming that
they lack any entry sites. Probe maps
region 3D-E in (A-E) and 3C in (F-K).
(L-P) Illustrated are the one to three
bands detected in mle mutant nuclei on
the duplicated region from line IV (2C1-
3CH) (O and P) and on the same segment
on the X (M and N). (O) and (P) are from
another nucleus.

(Q-S) A single band is detected at the
3F1 breakpoint of the duplication (3C2-
3F1, line VI) in msl-3 mutant nuclei (S),
corresponding to the weakest band of
the doublet at 3F on the X. Note the
weak signal on duplications compared to
the same region on the X chromosome.
Probe maps region 2D5-3A2 in (L-P)
and 3D-E in (Q-S).

DOI: 10.1371/journal.pbio.0020341.g002
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therefore examined whether autosomal transpositions of a
piece of the X were able to induce spreading. In cells
heterozygous for each of the transpositions listed above we
never observed additional MSL binding to the autosomal
regions either cis or trans to the insertion site (Table 1; see
Figure 1). We also did not observe additional MSL binding in
males homozygous for the transpositions described above.
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This was true irrespective of the number of high-affinity sites
contained in the transpositions. Interestingly, lines I and V,
which each contain several high-affinity sites, including the
roX1 or r0X2 gene, respectively, showed no spreading in males
wild-type for the MSLs (see Figure 1B). The dichotomy
between our results and those obtained with roX transgenes
suggests that spreading may be a phenomenon restricted to
some 70X transgenes (see below) and not an aspect of dosage
compensation.

To further assess if spreading in cis occurs on the X
chromosome, we next asked if the complex could spread from
the X onto an autosomal piece attached to the X by a
reciprocal translocation. We tested two reciprocal trans-
locations that interchanged large portions of the X and 3R or
2L (see Table 1, lines XII and XIII, respectively). Both
translocations separate 70X (3F) and roX2 (10C) genes from
one another and thus both pieces of each translocation
contain a roX locus. Anti-MSL-1 staining revealed the absence
of any bands on either of the 3R or 2L pieces of these
translocations (Figure 3), while the pattern observed on the
two transposed pieces of the X was normal. These results
strengthen the idea that spreading may be a phenomenon
restricted to roX transgenes, since the breakpoints in line XII
(10A) and line XIII (5A) are relatively close to the r0X2 (10C)
and roX1 (3F) loci, respectively.

We also tested two small transpositions of autosomal
regions into the X (Table 1, lines XIV and XV; Figure 3C):
Neither of them showed MSL binding, even weak, to any part
of the inserted autosomal sequences. Furthermore, females
either heterozygous or homozygous for these transpositions
and expressing ectopic MSL-2 did not show any MSL bands in
either of these insertions of autosomal material into the X,
although they displayed normal MSL binding both to the
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Figure 3. Compensasomes Do Not Spread
from the X Chromosome onto Autosomal
Regions Inserted on the X

(A) Females expressing MSL-2 from an
msl243-21 transgene and bearing a
reciprocal translocation between the X
and second chromosome (line XIII) do
not show additional bands in the regions
of the 2L arm juxtaposed to X chromo-
some material.

(B) MSL binding pattern on the X
chromosome of a wild-type male.

(C and D) The autosomal region 81F-
82F10-11 does not show MSL binding
when inserted at 3D in the single X of a
male (line XV) (C) or in MSL-2-express-
ing females heterozygous for the same
transposition (D). Note that the MSL
binding pattern on the X chromosome is
not altered by the insertion. The light
band (arrow) maintained on the wild-
type unpaired region of the X of a
female heterozygous for the transposi-
tion is also present next to the same
insertion at 3D on the unique X chro-
mosome of a male (compare C and D).

DOL: 10.1371/journal.pbio.0020341.g003

unpaired X region (in heterozygotes) and along the paired
portions of the two X chromosomes (Figure 3D). Thus,
insertion of a piece of an autosome into the X does not
disrupt MSL binding to either the unpaired X homologue at
the insertion site or the regions of the X immediately flanking
the site of insertion of autosomal material. Moreover, these
results are inconsistent with the model derived from the roX
transgene studies where MSL binding is observed both in the
autosomal regions adjacent to the insertion site and on the
wild-type autosomal homologue.

Discussion

In summary, we have used chromosome rearrangements to
test two central aspects of the proposed spreading model of
dosage compensation in Drosophila. It is worth noting that our
experiments were a priori neutral: They could have provided
compelling evidence for or against the spreading model. In
both cases our results are inconsistent with the clear
predictions of that model. First, we show that pieces of the
X chromosome inserted into an autosome bind compensa-
somes in precisely the pattern characteristic of that piece of
the X at its endogenous location on the X, and this property
is independent of the presence of sites previously described
as entry sites. Second, compensasomes do not spread from
the X into autosomal pieces inserted into, or translocated
onto, the X. Moreover, there is not spreading of compensa-
somes from autosomal insertions of pieces of the X
chromosome into the autosomal regions flanking the in-
sertion, even when such pieces contain a 70X gene close to the
breakpoint. These results suggest that spreading in cis is not
part of the process of dosage compensation in flies. We thus
propose that all of the hundreds of sites along the X
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chromosome where compensasomes are found in wild-type
males are competent to independently recruit compensa-
somes.

Our findings raise several questions regarding previous
data. Are the 35-40 sites that attract partial complexes in mle
or msl-3 mutants qualitatively different from the other sites at
which MSL bands are found in wild-type, and if so, how? Why
do r0X transgenes induce additional binding to adjacent
autosomal sequences?

With respect to the potential heterogeneity of compensa-
some binding sites, while most of the relevant data are
indirect (only the r0XI and r0X2 genes are identified binding
sites), the data are consistent with the simple view that the
binding sites are homogeneous in terms of their function, but
have varying affinities for compensasomes. Our finding that
pieces of X chromosome transposed to autosomal locations
display normal patterns of compensasome binding, irrespec-
tive of whether or not they contain high-affinity sites,
removes the one functional distinction between binding sites
that had been proposed. That there are not two classes of
binding sites in terms of affinity for compensasomes, but
rather a continuum of affinities, is strongly suggested by the
recent report of Demakova et al. (2003), who carefully
characterized the number and locations of compensasome
bands in mutant females expressing various limiting amounts
of MSL-2. They found only four bands in the most limiting
case, and progressively higher numbers of bands as more
MSL-2 protein was expressed. Interestingly, the intermediate
40 sites at which complete complexes are assembled in these
conditions exactly matched with the 35-40 high-affinity sites
bound by partial complexes in mle or msl-3 mutants. Their
data are consistent with a model in which compensasomes
continue to bind site specifically to additional sites after all
high-affinity sites are occupied, as opposed to spreading from
high-affinity sites as previously proposed. Given these
findings, a reasonable scenario as to how dosage compensa-
tion is achieved would be the following. As MSL expression
begins, the high-affinity sites progressively sequester nascent
partial or full complexes in the early stages of dosage
compensation. When the amount of available complexes or
its components increases, sites of higher affinity would
accumulate more complexes, while low-affinity sites would
remain undetectable, until the former have preferentially
assembled sufficient amounts of complexes to make compo-
nents available for sites with lower affinities. Thus, the
compensasomes would progressively bind to different sites
along the X according to the different affinities of these sites.
Consistent with our model, we found that in mle or msi-3
mutants, duplications maintain binding of partial complexes
at the high-affinity sites (Figure 2N, 2P, and 2S), though with a
lower affinity than the same site on the X. The latter
observation suggests that, in conditions where components
of the complex are limiting, binding might also be dependent
on the location of these sequences in the cell (see discussion
on spreading below).

That compensasome binding sites would have a range of
affinities is also consistent with what is known about DNA-
binding proteins, which recognize with varying affinities a
range of binding sites whose sequences are related to a
common consensus. Variations from the consensus can allow
temporal and quantitative modulation of individual genes, or
subsets of genes. That compensasome binding sites are also
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likely to vary in sequence, and hence affinities, comes from
what is known about sex chromosome evolution in Drosophila
species (Marin et al. 1996, 2000). During the course of sex
chromosome evolution in this genus there are a number of
cases in which new X chromosomes have evolved, and in all
cases examined to date, this has been accompanied by the
new X chromosome gradually acquiring compensasome
binding sites as the new Y chromosome, its former
homologue, degenerates. The selective advantage of dosage
compensation for each gene is determined both by the state
of degeneration of the allele on the new Y chromosome and
by the degree to which a gene in males requires its function,
and thus its expression, to match the output of both wild-type
female X chromosomes (Marin et al. 2000). Hence, one would
expect individually evolved binding sites to exhibit a range of
affinities for compensasomes. Finally, we note that each of the
final compensasome bands on the X chromosome displays a
reproducible but specific intensity, likely to reflect not only
different affinities for compensasomes, but also the length of
X chromosome encompassed in each band.

The last issue we wish to address is spreading. The fact that,
in chromosome rearrangements that juxtapose pieces of X
and autosome, we never observed spreading, even when entry
sites or roX genes were near the breakpoints, suggests that
spreading does not exist naturally on the X chromosome, and
is not required to establish the final pattern of binding in
Drosophila males. Yet spreading from roX transgenes is very
well documented in a variety of situations. We therefore
suggest that spreading is a phenomenon specific to the roX
transgenes, and a consequence of the key function of roX
RNAs in dosage compensation. In particular, we propose that
the r0X genes are the sites of assembly of compensasomes
using newly synthesized roX RNAs, just as the ribosomal RNA
genes are the sites where ribosomes are assembled. Thus, roX
transgenes would generate a high local concentration of
compensasomes in their vicinity, competing with other
chromatin-binding factors that normally bind to nearby
autosomal sequences. In some cases, compensasomes would
displace these other factors, resulting in a new compensa-
some band in the autosomal region flanking the transgene
(spreading). Several features of spreading are consistent with
this proposal. First, additional bands corresponding to
spreading from roX transgenes contain roX RNA and the
H4Lys16 modification, suggesting that they correspond to
mature complexes (Kelley et al. 1999). Second, transcription
from a roX transgene is required to observe spreading of the
complex onto neighboring regions (Park et al. 2002, 2003).
Third, roX transgenes show variable and often no additional
bands in a wild-type background, suggesting that spreading is
largely dependent on the insertion site and its environment
on the autosomes. One possibility would be that these r0X
transgenes lacking spreading are inserted next to sites bound
by factors normally counteracting the effect of compensa-
somes on the autosomes. Such a view is supported by recent
data showing that association of compensasomes at some
roX1 transgenes can overcome the effect of methylation-
mediated silencers (Kelley and Kuroda 2003). Finally, MSL-1
and MSL-2 co-overexpression leads to mislocalization of
partial MSL complexes to the autosomes and the centromere,
as well as a dramatic decompaction of the X (Oh et al. 2003), a
male-specific phenotype also observed in both iswi or nurf
mutants, two chromatin regulators (Deuring et al. 2000;
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Badenhorst et al. 2002; Corona et al. 2002). Thus, increasing
locally the amount of available complexes can induce new
binding of MSL complexes to usually non-dosage-compen-
sated regions.

Molecular studies of dosage compensation in flies, worms,
and mammals have revealed some striking similarities
between these systems. In all three systems dosage compen-
sation is achieved by a widespread modification of the
structure of X chromosome chromatin, and in mammals
and flies this involves specific modifications of histones.
Dosage compensation in mammals and flies is also similar in
that noncoding RNAs are essential components of the dosage
compensation machinery. With respect to the other compo-
nents of the dosage compensation machinery the situation is
less clear. While compensasome-related complexes might be
present in mammals (orthologs of msl-1, -2, -3, mle, and mof
genes exist in mammalian genomes), some of them have
identified functions not related to dosage compensation, and
orthologs of msl-1, -2, and -3 were not found in Caenorhabditis
elegans (Marin 2003). Up until now it had also been thought
that spreading was involved in dosage compensation in all
three systems (Park et al. 2002; Oh et al. 2003; Csankover-
suszki et al. 2004; Okamoto et al. 2004). However, our findings
indicate that in flies each of the bands on the X chromosome
at which compensasomes are found in males is able to
independently attract those complexes. Thus, at the inter-
band level spreading does not appear to be part of the dosage
compensation process in flies. However, it should be noted
that our results do not address either how compensasomes
are distributed across the tens of kilobases of DNA that likely
comprise individual compensasome bands in salivary gland
chromosomes, or how that distribution is achieved; it is
possible that, at the level of single bands, spreading may be
part of the process of dosage compensation.

Materials and Methods

Fly strains and genetic crosses. Flies were raised on standard
cornmeal-yeast-agar medium. Fly stocks containing transpositions
were obtained from the Bloomington Drosophila Stock Center. Their
genotypes are: Tp(L;2)rb 71 g, ¢t® v"/C(1)DX, y' w’ £ (line 1); Df(1)ct-J4,
In(1)dl-49, j’/C(]gDX, y W' f Dg(z,a)m”“% (line II); T;z(1,-2)xn+72d, Va
car’/C(DDX, y' f'; Dp@2)bw”, bw” (line 1N); Tp(1;3)w”, v f.- in w”/CIB,
B* (line vy Tp(L:3)v" 74c/EM7a (line V); Tp(L;2)w-ec, ec™ em® ct® sn’/
C()DX, y' w' f (line VIy; Tp(1;3)f 710/FM6 (line VII); Tp(l,ﬁ)]Cl53, o'/
FM7a (line VIIL); Th(I;3)sta, sta: ss"/FM3 (line 1X); Tp(L;3)w™, sc' 2" w™
(line X); Df(1)w258-45, y* sn’/C(1)DX, y' w' f'; Dp(1;3)w" 6 7kA- (line XI);
T(I:3)v, v*/FM6 (line XII); Tp(2:1)odd" "%, b pr' en' sca’/CyO (line XIII);
Df(2 l)sc19~7/In(2 DCy " In(2R)Cy, Cy' amos™™" en® sp® or Dp(2;1)B19, y'
ed" dp®® o' (line XIV); Dp(3;1)2-2, w'"'%; Df(3R)2-2/TM3, Sb" (line XV)).
Breakpoints and insertion site are referred in Table 1. Some lines
contain additional rearrangements referenced in Lindsey and Zimm
(1992). Depending on their genotype, each line was crossed to
Canton-S males or females for studies of MSL binding in their male
progeny. For homozygous transpositions studies, stocks were bal-
anced to give w; Tp(1;2)/Cyo-GFP or w; Tp(1;3)/TM3-GFP stocks. Non-
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GFP third instar male larvae were dissected for analysis. For
autosome-to-X transpositions, females from lines XIV and XV were
mated with w; msl243-21/CyoGFP or Dp(A;1)/Y; msl243-21/CyoGFP
males. Non-GFP female larvae were dissected. For mle and msi-3
mutant analysis, stocks were balanced to give w; Tp(1;2)/CyoGFP; msi3"/
TM3-GFP or w; j)rmlelz‘”/CyDGFP; Tp(1;3)/TM3-GFP stocks. Females
were crossed to w; mslj’/’/CyoGI“P,‘ msl2A3-10/TM3-GFP or mle' enbw/
CyoGFP; msl243-21/TM3-GFP males, respectively. Non-GFP third
instar female larvae were dissected for salivary glands polytene
chromosomes analysis. Lines expressing MSL-2 from transgenes
msl243-21 and msl243-10 are described in Bashaw and Baker
(1995). Mle and msl-3 mutants are described in Fukunaga et al.
(1975), Kuroda et al. (1991), and Gorman et al. (1995). All crosses to
generate larvae for immunostaining were carried out at 18 °C.

Polytene chromosome immunostaining. Glands from male third
instar larvae were dissected in PBS/0.7% NaCl, prefixed in 45% acetic
acid for 10 s, and then fixed for 2-3 min in lactic acid/water/acetic
acid (1:2:3) solution on siliconized coverslips. Glands were squashed
and coverslips flipped off after freezing the slides in liquid nitrogen.
Slides were then incubated in PBS for 15 min followed by incubation
with affinity-purified anti-MSL-1 antibodies (dilution 1:100) as
described previously (Gorman et al. 1995). Chromosomes were
viewed under epifluorescence optics on a Zeiss Axiophot microscope
or a confocal microscope; pictures were taken using Spot software
and colored.

Immunofluorescent in situ hybridization of polytene chromo-
somes. Clones RP-98 17.E.2, RP-98 03.D.13, and RP-98 48.0.22 from
the Drosophila melanogaster BAC library (BACPAC Resources, Oakland,
California, United States) were used to map regions 3D-E, 3C, and
2D5-3A2, respectively. Specific probes were obtained from BAC
clone DNA preparations using the Bionick Labelling System
(Invitrogen, Carlsbad, California, United States) according to the
manufacturer’s instructions. Squashes were prepared as described
above. Immunostaining with affinity-purified anti-MSL-1 antibodies
was followed by incubation with the appropriate biotinylated probe
according to the method of Lavrov et al. (2004).
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The LocusLink (http://lwww.ncbi.nlm.nih.gov/LocusLink/) accession
numbers for the genes and gene products discussed in this paper
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31518), msi-1 (LocusLink 35121), msl-2 (LocusLink 33565), msi-3
(LocusLink 38779), roX1 (LocusLink 43963), 70X2 (LocusLink 44673),
and SXL (LocusLink 44872).
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